Studentische Arbeiten
Liebe Studierende, an unserem Lehrstuhl findet Ihr an vielfältiges Angebot an verschiedenen Arbeiten. Neue Themen werden regelmäßig ausgeschrieben und hier veröffentlicht. Solltet Ihr selber Ideen und Wünsche haben, zögert nicht unsere Mitarbeiter:innen selbst anzusprechen.
Folgende Arbeiten stehen derzeit zur Verfügung.
Masterarbeiten
M: Development and application of a FPGA‐based partial discharge measurement system
Allgemeine Informationen:
- Zeitraum: ab sofort
- Autor: offen
- Aushang PDF
Betreuer:
Stephan Müller, M. Sc.
Department Elektrotechnik-Elektronik-Informationstechnik (EEI)
Lehrstuhl für Elektrische Energiesysteme
- Telefon: +49 9131 85-67548
- E-Mail: stephan.mueller@fau.de
Keywords: Partial discharge measurement, FPGA, High voltage test, RedPitaya
Description:
-
One of the challenges in high‐voltage (HV) engineering is the identification and quantification of partial discharges (PD). PDs are small electrical discharges occurring within insulating materials, indicating potential insulation degradation. PD measurement technology is an indispensable testing method to assess and ensure the quality of HV insulations. Although commercial test equipment is widely available, the aim of the thesis proposal at hand is to design a PD test system from scratch using the Redpitaya FPGA‐SoC platform. The ultimate goal is to obtain an easily extendable, freely programmable, PD measuring system.
Scope:
- Getting started with PD measurement and the pitfalls of high frequency, low current measurements in HV environments.
- Understanding of PD measurement systems and the various methods of charge estimation.
- Design and implement the PD measurement software on the RedPitaya STEMlab 125‐14, which is already available at the Institute, using the quasi‐peak detection method.
- Design and test calibration procedures, data flows and a GUI.
The scope of the thesis can be adjusted according to the type of the thesis (bachelor/master)
Requirements:
- Independent, structured way of working.
- Solid programming abilities in Xilinx Vivado 2020.1 and C# or the willingness, stamina, and engineering skills to obtain these.
M: Entwicklung der induktiven Hochstromeinkopplung in einem Stoßspannungsprüfkreis für Kabel und deren Garnituren
Allgemeine Informationen:
- Zeitraum: ab sofort
- Autor: offen
- Aushang PDF
Betreuer:
Stephan Müller, M. Sc.
Department Elektrotechnik-Elektronik-Informationstechnik (EEI)
Lehrstuhl für Elektrische Energiesysteme
- Telefon: +49 9131 85-67548
- E-Mail: stephan.mueller@fau.de
Keywords: Mittel‐, Hochspannung, Kabelprüfung
Themenbeschreibung:
- Nach Norm DIN EN IEC 60230 (VDE 0481‐230) müssen Mittel‐ und Hochspannungskabel sowie deren Garnituren auch mit Stoßspannung bei Betriebstemperatur geprüft werden. Zum instellen der Betriebstemperatur wird das Kabel während der gesamten Hochspannungsprüfung parallel mit Betriebsstrom aus einem Hochstromtransformator gespeist. Dazu müssen die beiden Kreise Hochspannung/Hochstrom galvanisch getrennt und induktiv gekoppelt werden.
- Es ist ein Koppeltransformator zu dimensionieren, welcher die Impedanz und vor allem die hohe Schleifeninduktivität des Kabels als Prüfobjekt mit einem Strom bis 2 kA speisen kann. Der Prüfaufbau wird im Hochspannungs‐ /Hochstromlabor des Lehrstuhls in Betrieb genommen.
Voraussetzungen::
- Vorlesung Hochspannungstechnik, Elektromagnetische Felder
- Vorteilhaft sind Erfahrungen in der Programmierung (v.a. Matlab)
- Handwerkliche Tätigkeit
- Selbstständige, sorgfältige und strukturierte Arbeitsweise
M: Bifurcation-based Analysis of Voltage Stability in Power Systems
Allgemeine Informationen:
- Zeitraum: ab sofort
- Autor: offen
Betreuer:
Ilya Burlakin, M. Sc.
Department Elektrotechnik-Elektronik-Informationstechnik (EEI)
Lehrstuhl für Elektrische Energiesysteme
- Telefon: +49 9131 85-67542
- E-Mail: ilya.burlakin@fau.de
Keywords: Bifurcation Analysis, Voltage Stability, Nonlinear Dynamics, Eigenvalues, Stability Margins
Description:
- In the evolving landscape of power system dynamics, ensuring voltage stability is paramount. This research explores the profound application of bifurcation analysis in determining the voltage stability of power systems.
- By dissecting nonlinear system behaviors, bifurcation analysis helps pinpoint critical operating scenarios where system behaviors change, thereby providing valuable insights into voltage stability margins.
- This deep dive into the power system’s nonlinear dynamics offers a comprehensive perspective on how varying parameters impact voltage stability, paving the way for enhanced grid reliability and resilience.
Scope:
- Getting started with MATLAB/Simulink or Python
- Introduction to voltage stability challenges
- Simulation-based validation of bifurcation analysis
Requirements:
- Independent, careful and structured way of working
- Knowledge of electrical power systems
M: Untersuchung der durch Modulation hervorgerufenen Interaktionen eines PV-Umrichters mit dem Netz
Allgemeine Informationen:
- Zeitraum: ab sofort
- Autor: offen
Betreuer:
Andreas Bammes, M. Sc.
Department Elektrotechnik-Elektronik-Informationstechnik (EEI)
Lehrstuhl für Elektrische Energiesysteme
- Telefon: +49911530299258
- E-Mail: andreas.bammes@fau.de
Keywords: PV-Umrichter, Grundschwingungsmodell, Modulationsverfahren, Umrichterbasierte Energieversorgung
Themenbeschreibung:
- Durch die zunehmende Einbindung von erneuerbaren Energiequellen mithilfe von mehrstufigen Umrichtern in das Stromnetz steigen die Herausforderungen im Bereich der Umrichterkoordination in Bezug auf deren Stabilitätsverhalten
- Neben stationären Oberschwingungen im Netz müssen deshalb die aus der Interaktion von Umrichtersteuerung und Netzresonanz resultierenden Harmonischen in Stabilitätsbetrachtungen mit einbezogen werden
- Ziel der Arbeit ist deshalb einen PV-Umrichter in einem Mittelspannungs-Testnetz, um ein PWM-basiertes Modulationsverfahren zu ergänzen und die durch dieses hervorgerufenen Interaktionen zwischen Umrichterinteraktionen zu untersuchen und zu bewerten
Inhalt:
- Aneignung Grundliegender Kenntnisse zu Modulationsverfahren
- Programmierung einer flexibel parametrierbaren Sinus-Dreieck-PWM und einpflegen des Modulators in den PV-Umrichter eines Grundschwingungsmodells
- Umsetzung einer bewussten Resonanzregelung mithilfe des Modulators
- Durchführung eines Impedanzscans am resultierenden Modell
Anforderungen:
- Selbstständige, sorgfältige und strukturierte Arbeitsweise
- Für den Einstieg in das Thema sind Kenntnisse über leistungselektronische Komponenten in Drehstromsystemen (HGÜ, FACTS), Regelungstechnik und Systemtheorie hilfreich
- Wünschenswert sind bereits vorhandene Kenntnisse im Bereich der Hochleistungsstromrichter
- Vorteilhaft sind Kenntnisse mit Netzsimulationsprogrammen (MATLAB®/Simulink, PSS®NETOMAC)
M: Integration eines netzbildenden MVDC-Systems in einen Ausschnitt des deutschen Übertragungsnetzes
Allgemeine Informationen:
- Zeitraum: ab sofort
- Autor: offen
Betreuer:
Julian Richter, M.Sc.
Department Elektrotechnik-Elektronik-Informationstechnik (EEI)
Lehrstuhl für Elektrische Energiesysteme
- Telefon: +49 9131 85-67552
- E-Mail: julian.richter@fau.de
Ilya Burlakin, M. Sc.
Department Elektrotechnik-Elektronik-Informationstechnik (EEI)
Lehrstuhl für Elektrische Energiesysteme
- Telefon: +49 9131 85-67542
- E-Mail: ilya.burlakin@fau.de
Keywords: MVDC-Netze, RMS, PowerFactory, Umrichterregelung
Themenbeschreibung:
- Im Rahmen des Kopernikus ENSURE Projekts wurde ein Ausschnitt im Norden Deutschlands definiert, in dem durch den massiven Zubau von v.a. Windparks einige technische Herausforderungen für das gesamte Energieversorgungsnetz zu erwarten sind.
- Kollektornetze wie beispielsweise Mittelspannungs-Gleichspannungsnetze (MVDC) integrieren RES und Speichersysteme aggregiert an einem Netzverknüpfungspunkt. Dies bietet den Anlagenbetreibern die Möglichkeit diverse Systemdienstleistungen wie netzbildende Regelungen an der Kopfstation anzubieten.
- Ziel dieser Arbeit ist es ein solches MVDC-System in den entsprechend modellierten Ausschnitt des deutschen Übertragungsnetzes zu integrieren. Zusätzlich sollen die in diesem System benötigten Umrichter mit entsprechenden Regelungen ausgestattet werden und regenerative Erzeugungsanlagen entsprechend den deutschen Ausbauzielen in das MVDC Netz integriert werden.
Ziele:
- Einarbeitung in PowerFactory und Regelung von Umrichtern
- Literaturrecherche zur Modellierung von Gleichspannungsnetzen in RMS Simulationen
- Implementierung der entsprechenden Umrichterregelungen (netzbildend, netzfolgend, DC/DC)
- Modellierung regenerativer Erzeugungsanlagen entsprechend den deutschen Ausbauzielen in das MVDC-System
Voraussetzungen:
- Selbstständige, sorgfältige und strukturierte Arbeitsweise
- Grundkenntnisse Leistungselektronischer Betriebsmittel (PEL/HSTR)
- Wünschenswert sind Kenntnisse von elektrischen Energiesystemen (z.B. PEEV und BVE)
- Vorteilhaft sind Erfahrungen mit Simulationsprogrammen (v.a. PowerFactory)
M: Untersuchungen zu Wechselwirkungen in vermaschten AC und DC Systemen unter Berücksichtung der Hochspannungs-Gleichstrom-Übertragung
Autor: offen
Zeitraum: ab sofort
Betreuer:
Alexander Raab, M. Sc.
Department Elektrotechnik-Elektronik-Informationstechnik (EEI)
Lehrstuhl für Elektrische Energiesysteme
- Telefon: +49 9131 85-67545
- E-Mail: alexander.raab@fau.de
Themenbeschreibung nach Rücksprache
M: Modelling of Fully-Rated Converter Wind Turbines (FRC-WT)
Allgemeine Informationen:
- Zeitraum: ab sofort
- Autor: offen
Betreuer:
Ilya Burlakin, M. Sc.
Department Elektrotechnik-Elektronik-Informationstechnik (EEI)
Lehrstuhl für Elektrische Energiesysteme
- Telefon: +49 9131 85-67542
- E-Mail: ilya.burlakin@fau.de
Keywords: Wind Energy Systems, Fully-Rated Converter Wind Turbines (FRC-WT), Transient Stability, Power System Dynamics and Control
Description:
- This research focuses on creating a model for Fully Rated Converter Wind Turbines, emphasizing their transient stability in wind energy systems.
- With the integration of this model, an in-depth simulation will be designed. This model’s practical application will be affirmed by incorporating it into a stability simulation program.
- Test scenarios will involve a fundamental electrical grid, a representative turbine, and diverse operational setups to highlight the dynamic behavior, providing valuable insights into the model’s effects on real-world wind energy systems.
Scope:
- Getting started with MATLAB/Simulink, PowerFactory or PSCAD
- Introduction to FRC-WT
- Establishment of an algebraic framework and solution methods
- Integration of the DFIG model into a test system
Requirements:
- Independent, careful and structured way of working
- Knowledge of electrical power systems
M: Modelling of Doubly Fed Induction Generator (DFIG) for Transient Stability Studies in Wind Energy Systems
Allgemeine Informationen:
- Zeitraum: ab sofort
- Autor: offen
Betreuer:
Ilya Burlakin, M. Sc.
Department Elektrotechnik-Elektronik-Informationstechnik (EEI)
Lehrstuhl für Elektrische Energiesysteme
- Telefon: +49 9131 85-67542
- E-Mail: ilya.burlakin@fau.de
Keywords: Wind Energy Systems, DFIG, Transient Stability, Power System Dynamics and Control
Description:
- This research delves into developing a model for the Doubly Fed Induction Generator (DFIG), specifically for transient stability studies in wind energy systems.
- Integrating this model, a detailed wind turbine simulation will be established. Embedding this model into a stability simulation program will validate its practical application.
- Test scenarios will encompass an essential electrical grid, a representative windmill, and varied operations to demonstrate the dynamic behavior, offering insights into the model’s implications for real-world wind energy systems.
Scope:
- Getting started with MATLAB/Simulink, PowerFactory or PSCAD
- Introduction to the Doubly Fed Induction Generator (DFIG)
- Establishment of an algebraic framework and solution methods for the DFIG model
- Integration of the DFIG model into a test system
Requirements:
- Independent, careful and structured way of working
- Knowledge of electrical power systems
M: Modelling of Asynchronous Machines for Voltage Stability Studies
Allgemeine Informationen:
- Zeitraum: ab sofort
- Autor: offen
Betreuer:
Ilya Burlakin, M. Sc.
Department Elektrotechnik-Elektronik-Informationstechnik (EEI)
Lehrstuhl für Elektrische Energiesysteme
- Telefon: +49 9131 85-67542
- E-Mail: ilya.burlakin@fau.de
Keywords: Asynchronous Machines, Voltage Stability, Reactive Power
Description:
- Asynchronous machines (ASM), commonly known as induction machines, are pivotal components in many power system setups, providing versatility and efficiency.
- This thesis focuses on the detailed modeling of an asynchronous machine, capturing its inherent characteristics and behavior under various operating conditions.
- The primary aim is to comprehend deeply how this machine interacts with power systems, especially in the context of voltage stability.
- Through rigorous simulations and analysis, the study addresses voltage stability issues.
Scope:
- Getting started with MATLAB/Simulink and PowerFactory
- Introduction to ASM modelling
- Analysis and simulation to demonstrate the impact of ASM on voltage stability
Requirements:
- Independent, careful and structured way of working
- Knowledge of electrical power systems
M: Initialisierung eines dynamischen Randnetzgebietes für Echtzeitsimulationsanwendungen
Allgemeine Informationen:
- Zeitraum: ab sofort
- Autor: offen
Betreuer:
Julian Richter, M.Sc.
Department Elektrotechnik-Elektronik-Informationstechnik (EEI)
Lehrstuhl für Elektrische Energiesysteme
- Telefon: +49 9131 85-67552
- E-Mail: julian.richter@fau.de
Ilya Burlakin, M. Sc.
Department Elektrotechnik-Elektronik-Informationstechnik (EEI)
Lehrstuhl für Elektrische Energiesysteme
- Telefon: +49 9131 85-67542
- E-Mail: ilya.burlakin@fau.de
Keywords: Stabilität, Synchronmaschinen, Echtzeitsimulation, dynamisches Verhalten
Themenbeschreibung:
- EMT-basierte Simulationen wie die Echtzeitsimulation rampen zu Beginn der Simulation von null ausgehend auf die eingestellten Arbeitspunkte oder verwenden initiale Werte aus einer Lastflussberechnung. Dies erfordert entweder stabile Regler für den Einschwingvorgang oder eine exakt abgestimmte Lastflussberechnung aus beispielsweise einem RMS Modell des zu betrachteten Netzes.
- Da die maximale Netzgröße bei Echtzeitsimulationen begrenzt ist und meist nur Ausschnitte von Netzgebieten für EMT Simulationen relevant sind, werden sog. Study Areas definiert, die von einem Randnetz umgeben sind. Damit dieses Randnetz das dynamische Verhalten (Trägheit, Verhalten im Kurzschlussfall) des gesamten Netzes abbilden kann, wird an jedem Randnetzknoten eine Synchronmaschine mit Innenimpedanz modelliert.
- Ziel dieser Arbeit ist es das Randnetz eines vorgegebenen Netzmodells zu initialisieren. Hierzu sollen initiale Arbeitspunkte mittels Lastflussberechnung ermittelt werden und die Maschinenregler für die Einschwingphase ausgelegt werden. Anschließend die Initialisierung für verschiedene Szenarien (z.B. abnehmende Trägheit) getestet werden.
Ziele:
- Einarbeitung in die zu verwendenden Simulationsprogramme (PowerFactory und RSCAD)
- Literaturrecherche zur Initialisierung von elektr. Betriebsmitteln in EMT-Simulationen
- Entwicklung eines allgemeinen Startup-Prozesses für das modellierte Netzgebiet
- Anwendung der Methodik auf verschiedene Netzszenarien
Voraussetzungen:
- Selbstständige, sorgfältige und strukturierte Arbeitsweise
- Grundkenntnisse von elektrischen Energiesystemen
- Wünschenswert sind Kenntnisse zum Aufbau und Verhalten elektr. Betriebsmittel (v.a. BKE und BVE)
- Vorteilhaft sind Erfahrungen mit Simulationsprogrammen (v.a. PowerFactory und RSCAD)
M: Entwicklung und Anwendung einer Methodik zur harmonischen Analyse elektrischer Betriebsmittel
Allgemeine Informationen:
- Zeitraum: ab sofort
- Autor: offen
Betreuer:
Julian Richter, M.Sc.
Department Elektrotechnik-Elektronik-Informationstechnik (EEI)
Lehrstuhl für Elektrische Energiesysteme
- Telefon: +49 9131 85-67552
- E-Mail: julian.richter@fau.de
Andreas Bammes, M. Sc.
Department Elektrotechnik-Elektronik-Informationstechnik (EEI)
Lehrstuhl für Elektrische Energiesysteme
- Telefon: +49911530299258
- E-Mail: andreas.bammes@fau.de
Keywords: Stabilität, harmonische Analyse, Resonanzen, frequenzabhängige Netzimpedanz
Themenbeschreibung:
- Die Interaktionen zwischen elektrischen Betriebsmitteln finden nicht nur bei der Grundfrequenz von 50 Hz statt. Dies kann zu Stabilitätsproblemen in der Energieversorgung führen.
- Um diese Interaktionen zu identifizieren können verschiedene Methodiken (z.B. weißes Rauschen, Frequenzganganalyse) angewendet werden, um beispielsweise kritische Frequenzen oder Arbeitspunkte erkennen zu können.
- Ziel dieser Arbeit ist es eine ausgewählte Methodik zur harmonischen Analyse von Betriebsmitteln mithilfe einfacher, passiver Bauelemente zu erarbeiten und anschließend auf verschiedene Betriebsmittel anzuwenden. Anschließend sollen die Methodik bezüglich der Aussagekraft und Anwendbarkeit bewertet werden.
Ziele:
- Einarbeitung in die zu verwendenden Simulationsprogramme (vorwiegend Matlab/Simulink)
- Literaturrecherche zu Methoden der harmonischen Analyse von elektr. Betriebsmitteln
- Entwicklung einer Methodik in Matlab/Simulink anhand einfacher passiver Bauelemente
- Anwendung der Methodik auf verschiedene passive Betriebsmittel
- Bewertung der Methodik hinsichtlich Rechenaufwand und Übertragbarkeit
Voraussetzungen:
- Selbstständige, sorgfältige und strukturierte Arbeitsweise
- Grundkenntnisse von elektrischen Energiesystemen
- Wünschenswert sind umfassende Kenntnisse zum Verhalten elektr. Betriebsmittel (v.a. BKE)
- Vorteilhaft sind Erfahrungen mit Simulationsprogrammen (v.a. Matlab/Simulink)
M: Erstellen einer Nullsystemregelung eines VSC zur Fehlerstromkompensation in Kombination mit einer Petersenspule
Allgemeine Informationen:
- Zeitraum: ab sofort
- Autor: offen
Betreuer:
Jonathan Löbel, M. Sc.
Department Elektrotechnik-Elektronik-Informationstechnik (EEI)
Lehrstuhl für Elektrische Energiesysteme
- Telefon: +49 9131 85-29518
- E-Mail: jonathan.loebel@fau.de
Keywords: Stromrichter, VSC, Fehlerortung, MATLAB/SIMULINK
Beschreibung:
Im Zuge der Energiewende wandelt sich die Stromerzeugung. Die konventionellen, mit Kohle oder Gas betriebenen, Synchronmaschinen werden immer mehr durch Erneuerbare Energien ersetzt, die durch Stromrichter an das elektrische Netz angeschlossen sind. Dabei sind zukünftig vor allem VSC (Voltage Source Converter) von großer Bedeutung. Wird normalerweise durch VSC nur das Mit- und Gegensystem geregelt, bieten neue Konzepte auch die Möglichkeit das Nullsystem des elektrischen Netzes zu beeinflussen. Dies ist vor allem im Falle eines Erdschlusses von großer Bedeutung. Im klassischen Fall wird das Nullsystem häufig durch eine Kompensationsspule beeinflusst. Diese kompensiert den kapazitiven Erdschlussstrom. Durch ohmsche Verluste bleibt jedoch immer ein Wattreststrom. Dieser kann durch eine Nullsystemregelung eines VSC kompensiert werden. Im Zuge der Arbeit soll eine Nullsystemregelung eines VSC entworfen werden. Diese soll im Fehlerfall den Wattreststrom, der durch die ohmschen Verluste der Kompensationsspule auftritt, kompensieren. Die Regelung soll anschließend an Simulationen verifiziert werden.
Inhalt:
- Einarbeitung in MATLAB/Simulink
- Einarbeitung in Stromrichterregelungen
- Erstellen einer Nullsystemregelung zur Fehlerstromkompensation in Kombination mit einer Petersenspule
Anforderungen:
- Motivation und strukturierte Arbeitsweise
- Grundlagen elektrische Energieversorgung (z.B. GEEV, BKE, BVE)
- Grundlagen der Regelungstechnik von Vorteil
- Kenntnisse in MATLAB/Simulink von Vorteil
M: Erweiterung einer Nullsystemregelung eines VSC zur Erdschlussortung
Allgemeine Informationen:
- Zeitraum: ab sofort
- Autor: offen
Betreuer:
Jonathan Löbel, M. Sc.
Department Elektrotechnik-Elektronik-Informationstechnik (EEI)
Lehrstuhl für Elektrische Energiesysteme
- Telefon: +49 9131 85-29518
- E-Mail: jonathan.loebel@fau.de
Keywords: Stromrichter, VSC, Fehlerortung, MATLAB/SIMULINK
Beschreibung:
Im Zuge der Energiewende wandelt sich die Stromerzeugung. Die konventionellen, mit Kohle oder Gas betriebenen, Synchronmaschinen werden immer mehr durch Erneuerbare Energien ersetzt, die durch Stromrichter an das elektrische Netz angeschlossen sind. Dabei sind zukünftig vor allem VSC (Voltage Source Converter) von großer Bedeutung. Wird normalerweise durch VSC nur das Mit- und Gegensystem geregelt, bieten neue Konzepte auch die Möglichkeit das Nullsystem des elektrischen Netzes zu beeinflussen. Dies ist vor allem im Falle eines Erdschlusses von großer Bedeutung. Im klassischen Fall wird das Nullsystem durch die Sternpunktbehandlung am Transformator geregelt. Im Fehlerfall gibt es Möglichkeiten mit Hilfe der klassischen Regelung den Erdschluss zu orten und ihn damit möglichst schnell zu beheben. Durch die neuartige Nullsystemregelung eines VSC kann dieser die Aufgabe zukünftig übernehmen. Im Zuge der Arbeit soll eine Nullsystemregelung eines VSC entworfen werden. Diese soll bestehende Konzepte der Erdschlussortung durch die Sternpunktbehandlung an Transformatoren auf den Stromrichter übertragen.
Inhalt:
- Erarbeitung Fehlerortungs-Methoden
- Einarbeitung in MATLAB/Simulink
- Einarbeitung in Stromrichterregelungen
- Erstellen einer Nullsystemregelung für Fehlerortung
Anforderungen:
- Motivation und strukturierte Arbeitsweise
- Grundlagen elektrische Energieversorgung (z.B. GEEV, BKE, BVE)
- Grundlagen der Regelungstechnik von Vorteil
- Kenntnisse in MATLAB/Simulink von Vorteil
M: Untersuchung des Einflusses der Pulsweitenmodulation von VSC-Umrichtern auf harmonische Resonanzen
Allgemeine Informationen:
- Zeitraum: ab sofort
- Autor: offen
Betreuer:
Andreas Bammes, M. Sc.
Department Elektrotechnik-Elektronik-Informationstechnik (EEI)
Lehrstuhl für Elektrische Energiesysteme
- Telefon: +49911530299258
- E-Mail: andreas.bammes@fau.de
Keywords: VSC-Umrichter, 3-Level-Umrichter, supersynchrone Resonanzen, Modulationsverfahren, umrichterbasierte Energieversorgung
Beschreibung:
- Durch die zunehmende Einbindung von erneuerbaren Energiequellen mithilfe von mehrstufigen Umrichtern in das Stromnetz steigen die Herausforderungen im Bereich der Umrichterkoordination in Bezug auf deren Stabilitätsverhalten
- Neben stationären Oberschwingungen im Netz müssen deshalb die aus der Interaktion von Umrichtersteuerung und Netzresonanz resultierenden Harmonischen in Stabilitätsbetrachtungen mit einbezogen werden
- Hieraus ergibt sich die Fragestellung, wie sich die Modulation eines Umrichters auf die harmonischen Resonanzen auswirkt
- Ziel der Arbeit ist somit die Untersuchung von Einflussfaktoren verschiedener PWM-Verfahren auf supersynchrone Resonanzen
Inhalt:
- Aneignung Grundliegender Kenntnisse zu 3-Level-Umrichtern
- Vereinfachte Modellierung des Umrichters in PSS®NETOMAC als gesteuerte Spannungsquelle
- Umsetzung der PWM-Verfahren für den modellierten Umrichter mit dem Graphical Model Builder
- Aufbau eines einfachen AC-Netzes
- Bestimmung der Eigenwerte des Netzes und der harmonischen Impedanz
- Auswertung und Vergleich der Modulationsverfahren
- Gegebenenfalls Erweiterung der Verfahren auf Multilevel-Umrichter
Anforderungen:
- Selbstständige, sorgfältige und strukturierte Arbeitsweise
- Für den Einstieg in das Thema sind Kenntnisse über leistungselektronische Komponenten in Drehstromsystemen (HGÜ, FACTS), Regelungstechnik und Systemtheorie hilfreich
- Wünschenswert sind bereits vorhandene Kenntnisse im Bereich der Hochleistungsstromrichter
- Vorteilhaft sind Kenntnisse mit Netzsimulationsprogrammen (PSS®SINCAL/NETOMAC, DIgSILENT®PowerFactory, MATLAB®/Simulink)
Bachelorarbeiten, Forschungspraktika und Projektarbeiten
BA/FP: Development and application of a FPGA‐based partial discharge measurement system
Allgemeine Informationen:
- Zeitraum: ab sofort
- Autor: offen
- Aushang PDF
Betreuer:
Stephan Müller, M. Sc.
Department Elektrotechnik-Elektronik-Informationstechnik (EEI)
Lehrstuhl für Elektrische Energiesysteme
- Telefon: +49 9131 85-67548
- E-Mail: stephan.mueller@fau.de
Keywords: Partial discharge measurement, FPGA, High voltage test, RedPitaya
Description:
-
One of the challenges in high‐voltage (HV) engineering is the identification and quantification of partial discharges (PD). PDs are small electrical discharges occurring within insulating materials, indicating potential insulation degradation. PD measurement technology is an indispensable testing method to assess and ensure the quality of HV insulations. Although commercial test equipment is widely available, the aim of the thesis proposal at hand is to design a PD test system from scratch using the Redpitaya FPGA‐SoC platform. The ultimate goal is to obtain an easily extendable, freely programmable, PD measuring system.
Scope:
- Getting started with PD measurement and the pitfalls of high frequency, low current measurements in HV environments.
- Understanding of PD measurement systems and the various methods of charge estimation.
- Design and implement the PD measurement software on the RedPitaya STEMlab 125‐14, which is already available at the Institute, using the quasi‐peak detection method.
- Design and test calibration procedures, data flows and a GUI.
The scope of the thesis can be adjusted according to the type of the thesis (bachelor/master)
Requirements:
- Independent, structured way of working.
- Solid programming abilities in Xilinx Vivado 2020.1 and C# or the willingness, stamina, and engineering skills to obtain these.
BA/FP: Entwicklung der induktiven Hochstromeinkopplung in einem Stoßspannungsprüfkreis für Kabel und deren Garnituren
Allgemeine Informationen:
- Zeitraum: ab sofort
- Autor: offen
- Aushang PDF
Betreuer:
Stephan Müller, M. Sc.
Department Elektrotechnik-Elektronik-Informationstechnik (EEI)
Lehrstuhl für Elektrische Energiesysteme
- Telefon: +49 9131 85-67548
- E-Mail: stephan.mueller@fau.de
Keywords: Mittel‐, Hochspannung, Kabelprüfung
Themenbeschreibung:
- Nach Norm DIN EN IEC 60230 (VDE 0481‐230) müssen Mittel‐ und Hochspannungskabel sowie deren Garnituren auch mit Stoßspannung bei Betriebstemperatur geprüft werden. Zum instellen der Betriebstemperatur wird das Kabel während der gesamten Hochspannungsprüfung parallel mit Betriebsstrom aus einem Hochstromtransformator gespeist. Dazu müssen die beiden Kreise Hochspannung/Hochstrom galvanisch getrennt und induktiv gekoppelt werden.
- Es ist ein Koppeltransformator zu dimensionieren, welcher die Impedanz und vor allem die hohe Schleifeninduktivität des Kabels als Prüfobjekt mit einem Strom bis 2 kA speisen kann. Der Prüfaufbau wird im Hochspannungs‐ /Hochstromlabor des Lehrstuhls in Betrieb genommen.
Voraussetzungen::
- Vorlesung Hochspannungstechnik, Elektromagnetische Felder
- Vorteilhaft sind Erfahrungen in der Programmierung (v.a. Matlab)
- Handwerkliche Tätigkeit
- Selbstständige, sorgfältige und strukturierte Arbeitsweise
BA/FP/PA: Sizing of Battery Energy Storage Systems for Grid-Forming Applications in Wind Parks
Allgemeine Informationen:
- Zeitraum: ab sofort
- Autor: offen
Betreuer:
Ilya Burlakin, M. Sc.
Department Elektrotechnik-Elektronik-Informationstechnik (EEI)
Lehrstuhl für Elektrische Energiesysteme
- Telefon: +49 9131 85-67542
- E-Mail: ilya.burlakin@fau.de
Keywords: Wind Energy Systems, Battery Energy Storage Systems, Sizing Optimization
Description:
- While transformative in sustainable energy generation, Wind Energy Systems present challenges in grid integration and stability.
- This research explores the optimal sizing of Battery Energy Storage Systems (BESS) tailored for grid-forming applications within these wind energy frameworks.
- By strategically sizing and integrating BESS, the study aims to enhance grid stability, smoothen power fluctuations, and ensure a consistent energy output. The research offers a systematic approach to model, simulate, and size BESS to fit the dynamic needs of wind energy installations and the interconnected grid.
Scope:
- Getting started with Python and PowerFactory
- Getting started with Loadflow Analysis and Optimization
- Development of a systematic methodology for BESS sizing
- Simulation and testing of different BESS sizes under varied wind energy scenarios
Requierements:
- Independent, careful and structured way of working
- Knowledge of electrical power systems
FP: Erstellung eines Testnetzes mit einem PV-Umrichter als Spannungsquelle
Allgemeine Informationen:
- Zeitraum: ab sofort
- Autor: offen
Betreuer:
Andreas Bammes, M. Sc.
Department Elektrotechnik-Elektronik-Informationstechnik (EEI)
Lehrstuhl für Elektrische Energiesysteme
- Telefon: +49911530299258
- E-Mail: andreas.bammes@fau.de
Keywords: PV-Umrichter, Grundschwingungsmodell, Testnetz, Umrichterbasierte Energieversorgung
Themenbeschreibung:
- Durch die zunehmende Einbindung von erneuerbaren Energiequellen mithilfe von mehrstufigen Umrichtern in das Stromnetz steigen die Herausforderungen im Bereich der Umrichterkoordination in Bezug auf deren Stabilitätsverhalten
- Neben stationären Oberschwingungen im Netz müssen deshalb die aus der Interaktion von Umrichtersteuerung und Netzresonanz resultierenden Harmonischen in Stabilitätsbetrachtungen mit einbezogen werden
- Ziel der Arbeit ist deshalb die Erstellung eines Mittelspannungs-Testnetzes mit einem PV-Umrichter als Spannungsquelle, welches anschließend als Basis für weitere Untersuchungen zu Umrichterinteraktionen verwendet werden kann
- Das erstellte Modell könnte anschließend für eine auf dem Forschungspraktikum aufbauende Masterarbeit genutzt werden.
Inhalt:
- Aneignung Grundliegender Kenntnisse zur Erstellung von Netzmodellen
- Erstellung eines Simulationsmodells eines AC-seitigen Mittelspannungstestnetzes als Grundschwingungsmodell
- Vereinfachte Modellierung des PV-Umrichters als gesteuerte Spannungsquelle
Anforderungen:
- Selbstständige, sorgfältige und strukturierte Arbeitsweise
- Für den Einstieg in das Thema sind Kenntnisse über leistungselektronische Komponenten in Drehstromsystemen (HGÜ, FACTS), Regelungstechnik und Systemtheorie hilfreich
- Wünschenswert sind bereits vorhandene Kenntnisse im Bereich der Hochleistungsstromrichter
- Vorteilhaft sind Kenntnisse mit Netzsimulationsprogrammen (MATLAB®/Simulink, PSS®NETOMAC)
B/FP: Analyse des Imports von PowerFactory in den RTDS Echtzeitsimulator
Allgemeine Informationen:
- Zeitraum: ab sofort
- Autor: offen
Betreuer:
Timo Wagner, M. Sc.
Department Elektrotechnik-Elektronik-Informationstechnik (EEI)
Lehrstuhl für Elektrische Energiesysteme
- Telefon: +49911530299242
- E-Mail: timo.wagner@fau.de
Keywords: PowerFactory, RSCAD, Import/Export
Themenbeschreibung:
- Auswahl spezifischer PowerFactory Modelle für den Export bzw. Import
- Export der PowerFactory Modelle
- Import in den Echtzeitsimulator
- Validierung zwischen PowerFactory und RSCAD
Ziel:
Analyse der Chancen und Herausforderungen der PowerFactory Import-Funktion des RTDS Echtzeitsimulators
Voraussetzungen:
- Selbstständige, sorgfältige und strukturierte Arbeitsweise
- Grundkenntnisse von elektrischen Energiesystemen
- Wünschenswert sind Kenntnisse zum Aufbau und Verhalten elektr. Betriebsmittel (v.a. BKE und BVE)
- Vorteilhaft sind Erfahrungen mit Simulationsprogrammen (v.a. PowerFactory und RSCAD)
B/FP: Untersuchungen zu Wechselwirkungen in vermaschten AC und DC Systemen unter Berücksichtung der Hochspannungs-Gleichstrom-Übertragung
Autor: offen
Zeitraum: ab sofort
Betreuer:
Alexander Raab, M. Sc.
Department Elektrotechnik-Elektronik-Informationstechnik (EEI)
Lehrstuhl für Elektrische Energiesysteme
- Telefon: +49 9131 85-67545
- E-Mail: alexander.raab@fau.de
Themenbeschreibung nach Rücksprache
FP: Initialisierung eines dynamischen Randnetzgebietes für Echtzeitsimulationsanwendungen
Allgemeine Informationen:
- Zeitraum: ab sofort
- Autor: offen
Betreuer:
Julian Richter, M.Sc.
Department Elektrotechnik-Elektronik-Informationstechnik (EEI)
Lehrstuhl für Elektrische Energiesysteme
- Telefon: +49 9131 85-67552
- E-Mail: julian.richter@fau.de
Ilya Burlakin, M. Sc.
Department Elektrotechnik-Elektronik-Informationstechnik (EEI)
Lehrstuhl für Elektrische Energiesysteme
- Telefon: +49 9131 85-67542
- E-Mail: ilya.burlakin@fau.de
Keywords: Stabilität, Synchronmaschinen, Echtzeitsimulation, dynamisches Verhalten
Themenbeschreibung:
- EMT-basierte Simulationen wie die Echtzeitsimulation rampen zu Beginn der Simulation von null ausgehend auf die eingestellten Arbeitspunkte oder verwenden initiale Werte aus einer Lastflussberechnung. Dies erfordert entweder stabile Regler für den Einschwingvorgang oder eine exakt abgestimmte Lastflussberechnung aus beispielsweise einem RMS Modell des zu betrachteten Netzes.
- Da die maximale Netzgröße bei Echtzeitsimulationen begrenzt ist und meist nur Ausschnitte von Netzgebieten für EMT Simulationen relevant sind, werden sog. Study Areas definiert, die von einem Randnetz umgeben sind. Damit dieses Randnetz das dynamische Verhalten (Trägheit, Verhalten im Kurzschlussfall) des gesamten Netzes abbilden kann, wird an jedem Randnetzknoten eine Synchronmaschine mit Innenimpedanz modelliert.
- Ziel dieser Arbeit ist es das Randnetz eines vorgegebenen Netzmodells zu initialisieren. Hierzu sollen initiale Arbeitspunkte mittels Lastflussberechnung ermittelt werden und die Maschinenregler für die Einschwingphase ausgelegt werden. Anschließend die Initialisierung für verschiedene Szenarien (z.B. abnehmende Trägheit) getestet werden.
Ziele:
- Einarbeitung in die zu verwendenden Simulationsprogramme (PowerFactory und RSCAD)
- Literaturrecherche zur Initialisierung von elektr. Betriebsmitteln in EMT-Simulationen
- Entwicklung eines allgemeinen Startup-Prozesses für das modellierte Netzgebiet
- Anwendung der Methodik auf verschiedene Netzszenarien
Voraussetzungen:
- Selbstständige, sorgfältige und strukturierte Arbeitsweise
- Grundkenntnisse von elektrischen Energiesystemen
- Wünschenswert sind Kenntnisse zum Aufbau und Verhalten elektr. Betriebsmittel (v.a. BKE und BVE)
- Vorteilhaft sind Erfahrungen mit Simulationsprogrammen (v.a. PowerFactory und RSCAD)
FP: Automatisierte Implementierung von Schutzfunktionen in dynamisierten Netzen
Allgemeine Informationen:
- Zeitraum: ab sofort
- Autor: offen
Betreuer:
Bernd Schweinshaut, M. Sc.
Department Elektrotechnik-Elektronik-Informationstechnik (EEI)
Lehrstuhl für Elektrische Energiesysteme
- Telefon: +49 9131 85-67549
- E-Mail: bernd.bs.schweinshaut@fau.de
Keywords: PowerFactory, Übertragungsnetz, Schutz
Themenbeschreibung:
Mit dem Fortschreiten der Energiewende und dem Wegfall konventioneller Erzeugungseinheiten, ändert sich das Stabilitätsverhalten des elektrischen Netzes. Die Bedeutung von Stabilitätsuntersuchungen steigt daher auch für die Planung eines sicheren und wirtschaftlichen Netzbetriebs. Neben der Modellierung der einzelnen Betriebsmittel und der Berücksichtigung des dynamischen Verhalten mittels Regelungsmodellen, prägt auch der Schutz das elektrische Netz. Um das Netz umfassender untersuchen zu können, sollen verschiedene Schutzfunktionen, wie beispielsweise ein Überstromschutz, in ein bereits dynamisiertes Netz implementiert werden. Anschließend sollen die Funktionen getestet und analysiert werden. Die Betreuung der Arbeit erfolgt am LEES in Kooperation mit der TenneT TSO GmbH.
Ziele:
- Literaturrecherche und Einarbeitung in Thema und Software (DigSILENT®PowerFactory und Python)
- Entwicklung eines Skriptes zur Implementierung eines Überstromschutzes, einer automatischen Wiedereinschaltung und weiterer Funktionen in PowerFactory
- Test der Funktionen in einem dynamisierten Netz
- Analyse des Netzschutzes
Voraussetzungen:
- Selbstständige, sorgfältige und strukturierte Arbeitsweise
- Grundkenntnisse im Bereich der elektrischen Energietechnik (z.B. Vorlesung GEEV)
- Wünschenswert: Programmiererfahrung (z.B. Python, C++)
- Vorteilhaft sind Erfahrungen mit Simulationsprogrammen (v.a. PowerFactory)
B/FP: Analyse dezentraler Fehlerstromkompensation in vermaschten Netzen
Allgemeine Informationen:
- Zeitraum: ab sofort
- Autor: offen
Betreuer:
Jonathan Löbel, M. Sc.
Department Elektrotechnik-Elektronik-Informationstechnik (EEI)
Lehrstuhl für Elektrische Energiesysteme
- Telefon: +49 9131 85-29518
- E-Mail: jonathan.loebel@fau.de
Keywords: Sternpunktbehandlung, Petersenspule, Erdschlussfehler, MATLAB/SIMULINK, PowerFactory
Beschreibung:
Einphasige Erdschlüsse sind die häufigsten Fehler im elektrischen Netz. Der dabei auftretende Fehlerstrom, sowie die resultierenden Spannungen, hängen von der Sternpunktbehandlung des Netzes ab. Dabei ist die Auslegung mit einer Kompensationsspule eine der geläufigsten Arten in der Mittelspannung. Die Spule deckt jeweils ein definiertes, abgetrenntes, Netzgebiet ab. Neue Ansätze bieten die Möglichkeit den Fehlerstrom durch VSC (Voltage Source Converter) zu kompensieren. Durch die weite Verteilung von Stromrichtern wäre damit eine dezentrale Fehlerstromkompensation möglich. Im Zuge der Arbeit soll untersucht werden, wie sich das elektrische Netz im Fehlerfall bei dezentraler Kompensation verhält. Damit soll die Basis für zukünftige Untersuchungen mit dezentraler Sternpunktbehandlung durch Stromrichter gelegt werden.
Inhalt:
- Einarbeitung in Sternpunktbehandlung
- Erstellen eines Testnetzes in MATLAB/Simulink oder PowerFactory
- Simulation einer dezentralen Fehlerstromkompensation
- Analyse und vergleich von dezentraler und zentraler Sternpunktbehandlung
Anforderungen:
- Motivation und strukturierte Arbeitsweise
- Grundlagen elektrische Energieversorgung (z.B. GEEV, BKE, BVE)
- Grundlagen der Sternpunktbehandlung (z.B. PEEV, SLT) von Vorteil
- Kenntnisse in MATLAB/Simulink oder PowerFactory von Vorteil
Seminararbeiten
Bedeutung
B: Bachelorarbeit
M: Masterarbeit
PA: Projektarbeit
SA: Seminararbeit
FP: Forschungspraktikum