

Einblicke in unsere Forschung zur Energiewende

Themen und Vorführungen am 25. Oktober 2025

Prof. Dr.-Ing. Matthias Luther

Wir sind dabei!

abei! DIE
LANGE
NACHT
DER
WISSENSCHAFTEN

SA 25.10.2025 17 - 24 Uhr

Wir sind dabei!

Department
Elektrotechnik-Elektronik Informationstechnik
Cauerstraße 7-9

LANGE NACHT DER WISSENSCHAFTEN

Programm

Programm online

Wir sind dabei!

DIE

LANGE

NACHT

DER

WISSENSCHAFTEN

Programm

Programmheft als PDF

Wir sind dabei!

LANGE
NACHT
DER
WISSENSCHAFTEN

Vorführungen des Lehrstuhls für Elektrische Energiesysteme Erlangen Südgelände

Elektrische Energie und Hochspannungstechnik

Einblicke in unsere Forschung zur Energiewende

Interessante Grundlagenversuche:

- "lonenrad":
 Rückimpuls ionisierter Ladungsträger
- "Sonnenscheibe"
 (Töplersche Gleitanordnung)
- Teslatransformator
- Blitzeinschlag in Modellbausiedlung

Schalthandlungen an einem analogen Netzmodell

Einblicke in unsere Forschung zur Energiewende

Ausgleichsvorgänge in Übertragungsnetzen

- Schalthandlungen, Unterbrechungen, Kurzschlüsse können zu Pendellungen, Überlastungen und Schäden führen
- Der Netzschutz muss Komponenten und Netzbereiche selektiv abschalten

Versuche:

- Generator-Synchronisation
- Kurzschlüsse und Fehlerklärung

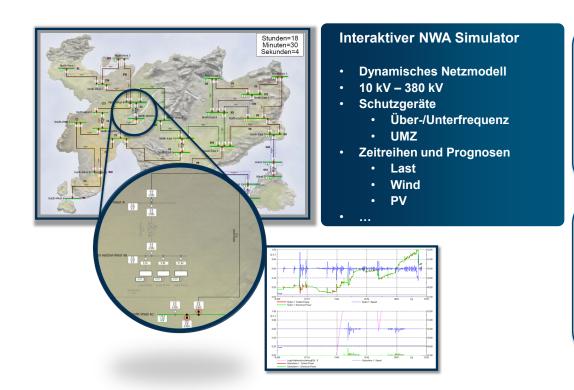
Forschungsnetzleitstelle - dynamisch und flexibel

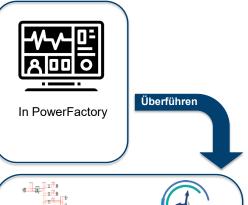
Einblicke in unsere Forschung zur Energiewende

Energiewende im Stromnetz

- Weniger große konventionelle Kraftwerke
- Viele kleinere dezentrale fluktuierende Erzeugungsanlagen
- Abhängigkeit von schwankender Erzeugung
- Höhere Wahrscheinlichkeit unvorhersehbarer Störungen Netzführung
- dynamischer und flexibler
- präventive und kurative Maßnahmen nach Störungen
- kontinuierlich stabilen Netzbetrieb gewährleisten

Forschungsnetzleitstelle des Lehrstuhls am Standort Erlangen ist mit dem Echtzeitsimulator am Standort Nürnberg verbunden.


Es werden typische Störungsszenarien und passende Korrekturmaßnahmen vorgeführt.


Netzwiederaufbau (NWA)-Simulator

Einblicke in unsere Forschung zur Energiewende

Friedrich-Alexander-Universität Lehrstuhl für Elektrische Energiesysteme

- Die Verantwortung der Verteilnetzbetreiber beim Netzwiederaufbau nimmt immer mehr zu
- Simulatoren zur Erprobung des Netzwiederaufbaus und zum Training von Personal unter realistischen Bedingungen fehlen
- Der NWA-Simulator wird aktuell vom Lehrstuhl im Verbundprojekt GridAssist eingesetzt, um ein KI basiertes Assistenzsystem für den Netzwiederaufbau zu entwickeln

Standort Erlangen Südgelände

Friedrich-Alexander-Universität Erlangen-Nürnberg

Lehrstuhl für Elektrische Energiesysteme

Cauerstraße 4 - Haus 1

91058 Erlangen

+49 9131 85 67541

ees.tf.fau.de

in linkedin.com/company/fau-ees

Vorführungen des Lehrstuhls für Elektrische Energiesysteme Nürnberg "Auf AEG"

Echtzeitlabor

Einblicke in unsere Forschung zur Energiewende

- Echtzeitsimulationen ermöglichen die Integration realer Anlagen in simulierte Netze.
 Sie verknüpfen somit reale und virtuelle Welt.
- Die Echtzeitsimulation dient u.a.
- zur Untersuchung der Netzintegration
 Erneuerbarer Energien
- dem Test von Schutzalgorithmen
- dem De-Risking von Großprojekten
- Lehrstuhl betreibt eines der leistungsstärksten Echtzeitlabore im akademischen Bereich weltweit

Niederspannungslabor

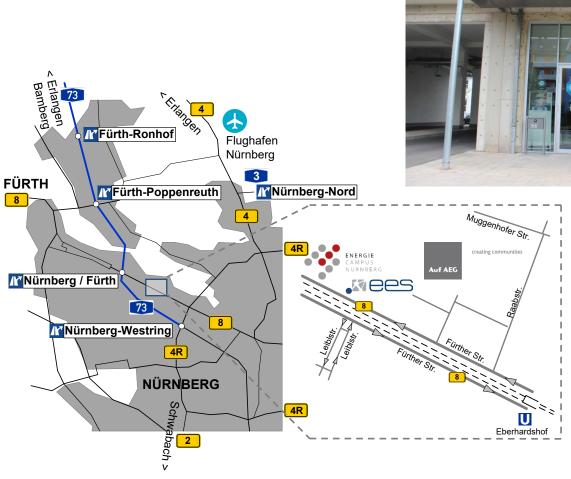
Einblicke in unsere Forschung zur Energiewende

- Zubau von Erneuerbaren Energien,
 Wärmepumpen und Batteriespeichern
- Niederspannungslabor erlaubt den Test der Anlagen, einzeln und als AC Microgrid oder DC Microgrid
- Niederspannungslabor lässt sich mit dem Echtzeitlabor koppeln:
 - Integration realer Anlagen aus dem Labor in das simulierte Netz
 - Erweiterung des Labors um simulierte Anlagen

Standort Nürnberg "Auf AEG"

Friedrich-Alexander-Universität Erlangen-Nürnberg

Lehrstuhl für Elektrische Energiesysteme


Fürther Straße 248 - Gebäude 33

90429 Nürnberg

+49 911 56854 9251

ees.tf.fau.de

linkedin.com/company/fau-ees

